
Xft2 and STSF
A Side by Side Comparison

Revision A, March 27, 2003

The information and various opinions in this paper were written by a number of different
engineers at Sun Microsystems, Inc.

Abstract
This document presents an overview of two different text
rendering and font handling technologies for the
X Window System - STSF and Xft.

The two technologies are compared and contrasted with a
view to highlighting both the major differences between
the two projects and the areas in which each project excels.

This study was conducted specifically to illustrate the
suitability and benefits of each technology for the Sun
GNOME desktop project. As a result, discussion is limited
in scope to the features of each project which are required
by Sun GNOME.

Software related to these two technologies, such as
fontconfig and Freetype, are also analyzed.

Both STSF and Xft are equally able to utilize the font
configuration and font caching features of fontconfig for
GNOME.

© 2002-2003 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun Logo, Sun Enterprise and Java are
trademarks, registered trademarks or service marks of Sun Microsystems, Inc. in the United States and other countries.

Table of Contents

Introduction... 3
Fontconfig and Xft2.. 3
Background... 3
Architecture.. 3

Key Features.. 4
Font Configuration.. 4
Font Naming, Listing and Matching.. 5
Client Side Fonts.. 6
High Quality Text Rendering.. 6

STSF... 7
Background.. 7
Architecture... 7
Key Features.. 9

Font Configuration.. 9
Font Listing and Matching.. 9
Server Side Fonts... 10
High Quality Text Rendering... 11
Technology Independence.. 11

Side by Side Comparison.. 12
Font Configuration and Selection... 12
Client Side and Server Side Fonts.. 13
Technology Dependence... 13
Text Rendering.. 14
Portability and Interoperability... 14
Current Product Readiness/Deployment... 15
Performance Evaluation.. 15
GNOME Integration... 16

STSF/Xft Bridge.. 16
Summary... 16
References... 17

Introduction
The text rendering requirements of modern day applications differ significantly from
when the X11 windowing system was designed. Advances in font technology have not
been adopted by X11, leaving it far behind when compared with the typographical
sophistication and APIs present in Microsoft Windows and Apple Mac OS systems.

Two new technologies have emerged that aim to fill this increasingly important void in
the X11 architecture. Both systems are designed to bring high quality text output,
including advanced features such as alpha-blended and anti-aliased text, to X11 users.

This paper compares and contrasts these two approaches to this difficult problem. The
intent is to identify the strengths and weaknesses of both technologies, specifically with
respect to the requirements of the Sun GNOME desktop system.

Fontconfig and Xft2

Background
Fontconfig and Xft were developed by Keith Packard of the XFree86 project with
sponsorship by Suse, Compaq and HP. Xft was designed to both add high quality text
output to X applications and toolkits, and to simplify the task of font configuration and
customization.

During the second design iteration the project was split into two distinct parts,
Fontconfig and Xft2. Fontconfig provides new font naming, matching and selection
mechanisms as well as a new font configuration and customization implementation
which is completely independent of X. Xft2 provides a convenient interface to the
FreeType font rasterizer and the X RENDER extension, allowing X applications to render
high quality, anti-aliased and alpha blended text.

Architecture
Fontconfig is a library which provides font configuration and matching which is entirely
independent of X11. It automatically detects newly installed fonts, has an XML based
configuration file, can identify a set of fonts required to cover a set of languages and
does not depend on X in any way.

FreeType is a font rasterizer - it takes a font file, parses it and renders the pixel
information into a buffer.

The X RENDER extension is an X extension which adds alpha-compositing, tessellation
and the ability to address to sub-pixels directly to the X rendering system. The extension
also allows applications to add to a server-side glyph image cache and render sequences
of glyphs directly from that cache.

Xft2 is a client side API for rendering text. It uses fontconfig for font management,
FreeType to rasterize the glyphs and renders the glyphs using the X RENDER extension.
On servers where the RENDER extension is not available it uses the core X11 protocol
drawing primitives to render glyphs.

Figure 1. Xft2/Fontconfig Architecture

Key Features

Font Configuration

Fontconfig uses a sophisticated XML based configuration mechanism to allow font
customization at both a user and system level. The choice of XML for the configuration
file format ensures that external configuration editors are straightforward to develop.

Fontconfig automatically detects the installation of new fonts into the font directories
and, unlike the core X font handling mechanism, does not require font configuration
files in each font directory. The absence of these per-directory configuration files makes
the system more robust by removing this common point of failure.

Fontconfig maintains an on-disk cached mapping of font name to font properties so that
font files do not need to be parsed to obtain the list of properties. This minimizes the
startup time of applications which use the fontconfig library. This font cache is
maintained automatically by the library but can be pre-generated using the fc-cache
utility program.

The configuration of the font matching process provided by Fontconfig is very flexible.
The configuration consists of a list of match/edit rules that can be used to either modify
a font pattern before matching the pattern against the list of available fonts or to modify
the result returned from the matching process. For example, to modify the spelling of
Sans Serif family in a given input pattern from sans serif to sans-serif, the following rule
could be used:

<match target="pattern">
 <test qual="any" name="family">
 <string>sans serif</string>
 </test>
 <edit name="family" mode="assign">
 <string>sans-serif</string>
 </edit>
</match>

Fontconfig also provides an extensive set of APIs to allow applications to
programmatically query and modify the configuration at runtime. This allows, for
example, applications to add a font directory which contains fonts specific to the

application.

Font Naming, Listing and Matching

Fontconfig implements a new font naming and matching mechanism intended to
replace the traditional XLFD mechanism. Significant effort was invested to ensure
flexibility for the application developer and user.

In order to request a font, an application presents a pattern to Fontconfig which is used
to locate a matching font. A font pattern consists of a list of named attributes, each
associated with a list of property values. The list of property values may be used by the
application to specify a list of preferences for each attribute. For example, instead of
requesting a Times New Roman font, the application may request a font using a list of
font family preferences e.g. Times New Roman, Luxi Serif, Serif.

Fontconfig also has a standard textual representation of a font pattern. There is no
requirement on applications to ever use this format, but is very useful for applications
who wish to store font preferences in its configuration database. The format and some
examples are illustrated below:

<families>-<point sizes>:<name1>=<values1>:<name2>=<values2>...

Times,serif:style=bold:outline=1 # A serif, bold, outline font -
 # preferably Times New Roman

Arial:scalable=True # A scalable Arial font

Fontconfig's matching algorithm has similar semantics to the font selection algorithm in
the W3C CSS (Cascading Style Sheet) specification. A font pattern is matched against all
available fonts and a closeness metric is calculated for each font. The font which
resembles the input pattern the most is returned.

There are some important details to note about the matching process. Because the user
may specify a list of acceptable values to match against for each attribute, the application
developer need no longer code various levels of fallbacks - the fallbacks may be specified
as part of the pattern. Also, the font returned from the matching process is assured to
actually be the font with the closest resemblance to the user's wishes as sane defaults are
specified for attributes like font weight e.g. if a user specifies Demi Bold, the matching
process will return Bold before returning Medium. This is a significant advance in
flexibility over the XFLD matching mechanism. It also supports font versioning, this
means that it returns the later version of a font multiple versions of a given font are
present. From an internationalization point of view it is worth noting that the matching
mechanism provides a standardized way to combine fonts for different languages to
render in the same glyph string.

Fontconfig's font listing interface recognizes that font listing is an inherently different
operation from font matching from an application developer's point of view. When
listing the available fonts matching a pattern, the application wishes to discover the
available options for a given parameter - e.g. the list of available font families. For this
reason, when listing the available fonts matching a given pattern, the application may
specify the list of font attributes it wishes to have returned. The key here is that only a
unique set of patterns are returned, ensuring the application gets the exact amount of
information it requires.

Fontconfig exposes a wealth of information on the fonts available to the application
developer. Details like the precise Unicode coverage and language group of the font were
found to be vital to certain application's needs only after integrating fontconfig to these

applications.

In order to aid migration to the new font naming mechanism, Fontconfig implements a
primitive compatibility layer with which applications can continue to use XLFDs font
naming, listing and matching.

Client Side Fonts

A key design decision made during the development of Xft2 was to manage fonts
exclusively within the application itself rather than relying on the X server or X font
server to handle it. There were several factors in making this decision:

• Extended font file access and faster adoption of new font technologies -
applications increasingly need access to better information on the fonts they are
using. Detailed font metrics and information on font features are required.
During the development of the RENDER extension it was decided that providing
an abstraction of all available font file formats was unwise, as protocol adoption
takes much longer than new font file formats development and the protocol
would thus be rendered obsolete before its widespread adoption. Because
applications using client side fonts no longer depend on the capabilities of the X
server, the adoption of new font technologies can move at the more rapid pace of
application development rather than the traditionally slow moving X server
technology.

• Application specific fonts - many applications ship with their own fonts which
they need to be able to use reliably. By only using fonts which are directly
available to the client, the inherent difficulty with providing application specific
fonts to the X server is avoided.

• Incremental rasterization - with the core X protocol, clients may only retrieve the
entire set of metrics for a font rather than individual glyph information. With
outline fonts this entails rasterizing every single glyph in the font as part of the
application initialization. Given that Unicode fonts may potentially contain
potentially hundreds of thousands of glyphs this becomes a serious performance
burden, especially given that only a fraction of the information will ever actually
be used. With a server-side scheme it may be possible to implement incremental
rasterization, but each client would then need to incrementally request glyph
information requiring a dramatic increase in the number of roundtrips to the X
server. With a client side model glyphs may be rasterized incrementally without
requiring those extra roundtrips.

• Ability to share fonts with the rest of the environment - some applications need
to be able to guarantee that they have access to the physical font file in use. An
example of an application with such a requirement is a PDF editor, as fonts may
be embedded directly into PDF files.

High Quality Text Rendering

Through its use of the X RENDER extension, Xft2 allows the alpha blending of text with
the destination drawable. This support for translucent text is a natural progression of the
alpha compositing operators made available by the RENDER extension.

Because Xft2 itself is little more than a conduit by which glyphs rasterized by FreeType
can be rendered to the X server using the RENDER extension, the text quality is almost
entirely dependent on the quality of the rasterizer used by FreeType. The default
rasterizer shipped with FreeType 2.1.3 supports sub-pixel rendering for LCD displays and
anti-aliased glyph rasterization using 256 levels of gray.

By default, FreeType also comes with an auto-hinting module which performs as well as
its TrueType hint interpreter1 , except with those fonts that have high quality TrueType
hints.

Proprietary rasterization engines, which implement higher quality rasterization than
FreeType's default rasterization engine, may also be shipped along with FreeType by
vendors. In order to do so, an implementation of FreeType's FT_Renderer abstraction
must be developed for each such rasterization engine. However, no facility to install new
rasterization plugins has yet been developed - plugins must currently be linked directly
to the FreeType library at build time.

STSF

Background

STSF (Standard Type Services Framework) is a joint project of the Sun Microsystems X11
and Globalization Engineering teams along with input from engineers from IBM and HP.
STSF is conceived as a neutral framework to provide state of the art font rendering, text
layout and font management capabilities to the broader audience of desktop and server
based UNIX users in the global market. The framework is technology and platform
neutral with respect to font renderers, layout engines, operating system, and even
neutral with respect to the X Window System so that it may be used not only by X
applications, but also by print drivers and server based applications such as Java servlets.

STSF APIs are made available for X11 applications through the XST X11 Server extension
and libXst X11 library.

STSF provides an object oriented, end to end solution for application developers to
manage fonts, and render and control the layout of text. STSF incorporates many
typographically sophisticated features from the most highly regarded existing APIs such
as Apple Type Services for Unicode Imaging (ATSUI) and Java2D TextLayouts. As a neutral
framework, STSF facilitates late binding of rendering and layout engines so that system
developers can easily make value-add decisions for unmodified applications.

Complete globalization support is a major requirement. STSF supports Unicode and
complex text layout for languages that require it.

Architecture

STSF's architecture consists of the following components:

STSF Font Server

The font server is a daemon process which resides on the same host as the X server.
It manages the loading of fonts, scalers and layout engines.

The font server implements most of the functionality of STSF. The font server is
responsible for loading fonts, rasterizing glyphs (using the scalers available to it),
calculating font metrics and performing text layout.

1 There are unresolved patent infringement issues with the TrueType bytecode interpreter. This would
prevent most, if not all, vendors from shipping the bytecode interpreter. See http://freetype.sourceforge.
net/patents.html for more details.

STSF Scalers

A scaler is a shared library plugin which wrap a given rasterization engine. Scalers
may be installed at any time and immediately used by the font server.

STSF Client Library

The STSF Client Library is a shared library that communicates with the STSF Font
Server using a private protocol. The STSF client library implements STSF APIs. STSF
Client Library expects its user to provide a set of callbacks wrapped in a special
structure – STDevice to do actual rendering.

Any application2 may use the library to render text. In order to do so the
application implements a device abstraction which is passed to the library for all
rendering operations. The abstraction implementation handles the actual
rendering of the pixels to the underlying device technology.

X11 Server

The X11 server implements an special STDevice for use with the STSF Client Library.
The X server also translates STSF protocol requests into calls to the STSF Client
Library.

STSF X11 Extension and STSF X11 client library libXst

The STSF X11 extension (XST) is an X11- based abstraction of the STSF Client
Library API. STSF objects are represented by XIDs and XST protocol requests mirror
closely the STSF Client Library API.

The STSF X11 client library libXst translates X11 STSF API to XST protocol requests
and communicates them to the X11 server. If the XST extension is not supported
by the X server, libXst calls the ST Client Library to rasterize the text and then can
send the bitmaps over the wire to the X server using the core X11 protocol.

2 In the case of X, the application referred to here is actually the X server.

Figure 2. STSF Architecture

Key Features

Font Configuration

One of the original goals of STSF project was to simplify font configuration, selection and
installation. The basic assumption for STSF font installation architecture is that modern
fonts are self-contained and do not require any external configuration files to be
available for applications to use.

STSF Font Server maintains a list of font directories from which it loads fonts. Newly
installed fonts are automatically detected and made available to clients. Applications
may set the list of font directories using the XSTTypeEnvSetFontFolders() api. The list of
font directories may also be set on server startup using the STFONTPATH environmental
variable.

STSF defines three types of font directories - system, local and user3. Applications may
specify which of these directories should be used by the font server.

STSF also has a font fallback policy whereby an application can specify a list of fallback
fonts to be used in the case where a specified font does not contain the required glyph.
Applications can also programmatically enable, disable or force the usage of font fallback
lists.

Font Listing and Matching

With STSF each font is associated with a list of names. Each of these names have
associated platform, an encoding and language IDs. These font names correspond
directly to the TrueType font names. Each font typically has several names associated
with it e.g. full font name, font family, version, Postscript name etc.

3 Usually, the system directory is /usr/X11/lib/fonts/, the local directory /usr/local/lib/
fonts/ and the user directory is ~/.fonts/.

An application can list the fonts which match against a font name. So, for example, to list
all Times New Roman fonts available, the application may invoke
XSTTypeEnvFindAllFonts():

fonts = XSTTypeEnvFindAllFonts (
 display, xst_env,
 "Times New Roman", sizeof ("Times New Roman"),
 NULL, TT_NAME_FONTFAMILY, &n_fonts);

Alternatively, applications may use the font family mechanism whereby all fonts are
grouped by family name. Applications may enumerate the list of available font families
and the list of fonts grouped under a given font family. Thus, to list all Times New
Roman fonts:

family = XSTTypeEnvFindFontFamily (
 display, xst_env,
 "Times New Roman", sizeof ("Times New Roman"),
 NULL, NULL);

fonts = XSTFontFamilyGetFonts (display, xst_env, family, &n_fonts);

Matching a single font is essentially the same operation as listing the available fonts
which match a given name. The XST protocol only allows listing so the first matching
font is taken from the list of matching fonts. XST always sorts fonts within font families,
so that the first font of a list of fonts returned by XSTFontFamilyGetFonts() is the default
font of the font family.

The STSF's font selection API was designed to match the traditional font naming
paradigm of GUI applications. Most typical applications present the user with a two-level
menu allowing the user to choose the font family (e.g. "Times New Roman", "Verdana"
etc.) and typeface variant (e.g. "Regular", "Bold" etc.) from the choices available on that
system. STSF provides a simple API by which such an interface may be implemented.

STSF allows the use of fontconfig for font configuration, listing and matching. In this
mode, STSF is accessing the same set of fonts as other fontconfig-aware applications.

Server Side Fonts

STSF adopts the server side font and glyph management model. The font server
implements an interface by which the X server can request font information, font
metrics and rasterized glyphs.

A client application may choose to load a set of fonts into the font server. These fonts are
called session fonts and may be referenced by URI's4 . In the atypical case where a font is
not directly available to the font server the client transfers the entire font file to the STSF
Font Server via the XST protocol extension.

Since there is only a single copy of STSF Font Server per machine, scaled glyph bitmaps
and metrics data can be effectively cached and shared between different clients,
including multiple X11 servers running on the same server.

In the future, it is planned for STSF font servers to be able to communicate with each

4 A client may specify a session font by a URI detailing the physical location of the font file. Currently
only file: URIs are supported, but it is planned that http: URIs for web fonts will be supported in the
future.

other, thus allowing the automatic synchronization of fonts.

A complete X11 client side font mode also exists. In such a mode, libXst does not
communicate with the STSF Font Server running on the X11 server machine. Instead it
communicates directly with STSF running on the same machine where the X11 client
application is running and communicates with the X11 server using the traditional X11
protocol. The STSF team is working on a variant of the client-side mode that
communicates with the X server using RENDER extension.

Some clear advantages of handling fonts on the server side include:

Only X11 Server-side text rendering can exploit features of the graphics hardware.
Relevant features include caching, anti-aliasing, and alpha blending support.

The network is falling behind Moore's Law. Transmitting bitmaps across the connection
between X11 clients and the X11 server is a performance bottleneck. This bottleneck will
be worsened by the very success of high quality rendering and improved, high resolution
displays, as these movements will increase the traffic geometrically. For example, new
LCD monitors are increasing the dpi by more than four times. Consider the case of
printers, already at 1200 to 2400 dpi, this causes an even larger jump in bandwidth
requirements.

Rasterizing on the client side and caching on the server causes additional complexity and
overhead in the client as a cache is necessary to determine if the glyph exists on the
server or not.

A single large glyph cache can service many X server clients at the same time. Creating a
glyph cache of this nature is a primary design goal of STSF. Other projects make best
sense in single user Linux/pc-type environments, neglecting shared computing and the
SunRay architecture in particular.

High Quality Text Rendering

STSF supports both anti-aliased and alpha blended text output. Text underline,
strikethrough and highlight colors may also have an alpha component allowing full text
translucency natively.

STSF also allows the rotation, shearing and scaling of text using an affine transformation
matrix associated with each output device.

STSF's text quality also depends completely on the rasterization engine used. STSF
provides a rasterization engine abstraction which allows the font server to choose
between engines at runtime. New rasterization engines can be installed and immediately
used. The default engine used by STSF is FreeType which, as stated above, implements a
wide range of highly important features. It is expected that vendors shipping STSF may
license other commercial font rasterizers and ship these with STSF.

Technology Independence

STSF is, at its core, a complete framework for the implementation of text rendering
systems. This framework is entirely platform and technology independent. This was
achieved by designing a set of abstractions with which the framework could be applied to
different technologies. There are three core abstractions in this framework:

STDevice

In order to render to any technology an application using the STSF Client Library
must implement this interface. This is the interface by which the STSF Client

Library actually renders the text to the required technology.

The STRasterDevice class is used where the underlying technology is a discrete
pixel-oriented device, e.g. a frame buffer. Conversely, the STVectorDevice class is
used where actual output device has no discrete pixels, e.g. Java™ 2D Development
Environment. STRasterDevice implementations must define a method which copies
an array of pixels from the internal STSF buffer to the output device.
STVectorDevice implementations must provide a method which renders a given
vector path.

Each device is associated with an affine transformation matrix which is applied by
STSF during the drawing process before the appropriate rendering function is
invoked. This allows the device implementation to control the rotation, scaling or
shearing of the output.

STScaler

Any font rasterization engine may be used in conjunction with STSF by
implementing the STScaler abstraction. Through this interface the ST Font Server
individually requests glyphs to be rasterized. Each implementation exposes to the
font server which font formats and font features it supports. Each scaler is
responsible for populating the font server's global glyph bitmap and metric cache.

STLayoutEngine

Different text layout engines may be used in conjunction with STSF by providing
an implementation of the STLayoutEngine interface. The font server presents the
layout engine with an array of characters and the engine returns a list of glyphs
and their positions. Additionally, clients may choose to perform their own layout
and simply provide a list of positioned glyphs to ST for it to rasterize.

Side by Side Comparison

Font Configuration and Selection

Fontconfig was designed to solve specific problems with the existing X font
infrastructure. The new font naming and selection mechanism is intended to solve the
inadequacies of XLFDs which in the past had led application developers to implement
their own mechanisms on top of XLFDs. It also solves internationalization problems
related to adequate font selection and matching for complex languages by setting
meaningful language font fallbacks as oppose to defaulting to generic fonts.

Similarly, the font configuration implementation was designed so that there could be a
single location for font configuration which could be shared amongst not only X
applications, but also applications like printing. Both of these mechanisms have already
been proven to solve real problems in serious applications e.g. replacing Mozilla's W3C
CSS implementation.

STSF font configuration design is based on the concept that modern fonts are self-
contained and do not require any external configuration files to be available for

applications to use. Older bitmap fonts can be grouped together with scalable fonts to
provide specific instances. STSF provides several methods for listing and matching fonts
as well as allowing the user to obtain detailed information relating to each font.

STSF Font Server will be able to utilize fontconfig to discover its fonts. In addition to that
nothing precludes STSF client application from utilizing fontconfig APIs for font
discovery and matching in parallel to STSF font enumeration APIs.

Client Side and Server Side Fonts

The issue over whether a new X font technology should use server side or client side font
management seems to be the fundamental issue which needs to be addressed. The
reason this issue is so hotly debated is there are many pros and cons to both schemes.
Some of the arguments in favor of each scheme are presented above.

One clear advantage of a server side implementation is the ability to utilize the specific
hardware available. The client side implementation has no ability to interact directly
with the hardware and therefore loses the ability to optimize its output.

Because of X's client/server model, one particular problem haunts any server side
scheme. Experience shows that typically the X server moves at a glacial speed when it
comes to adopting and deploying new technologies. Thus, large scale applications are
reluctant to rely completely on these new technologies so as to not limit their potential
uptake. This issue affects both technologies presented here. Xft2 has a dependency upon
the server side Render extension, and STSF has a dependency on the server side Xst
extension. However, both technologies have a full client side fallback in case the desired
extension is not available on the particular server. Additionally, vendors choosing to
include one of these technologies in their desktop can ensure it's presence in the X
server they provide, limiting the fallback cases to only that of remotely displaying to
systems without the extensions.

An argument has been made that a client side technology would have an advantage
when it comes to including newer font technologies. However, this argument fails under
closer examination as the font requires two parts, the renderer and the loader. For both
Xft2 and STSF, the renderers are pluggable modules. STSF has the advantage of allowing
any renderer to be chosen at runtime. Xft2 inherits the flexible mechanism of FreeType,
which it is married to. FreeType has no dynamic load provision, the renderer must be
compiled in, so by association, Xft2 has a compile time binding to the renderer. For the
loader portion, both the STSF server and Xft2 library are separate from the X server and
are therefore equally replaceable.

Technology Dependence

One of the key features of STSF is that, as a framework, it is not locked to any specific
technologies. The STDevice interface allows STSF to render to any technology. The benefit
of this approach is that STSF provides a consistent API no matter what the underlying
technology is.

On the other hand Xft2 is designed to be a simple implementation layer by which glyphs
rasterized by FreeType are rendered to an X display using RENDER and fonts are
configured using Fontconfig. In order to apply this to a different rendering technology,
Xft2 would be wholly replaced by another layer which would leverage Fontconfig and
FreeType but could (potentially) provide an entirely different API.

The key issue here is whether or not application developers would benefit from an API
which is consistent across different technologies and platforms or whether an API

tailored to each specific technology would be preferred. The STSF answer is to define a
rich API that allows market preference and globalization needs to be satisfied.

The STSF STScaler abstraction allows different rasterization engines to be shipped (and
licensed) independently of STSF. This feature is beneficial to vendors who wish to ship
higher quality proprietary engines. However, FreeType also provides a rasterization
engine abstraction. It may be possible for FreeType to borrow a page from STSF and
achieve a similar capability, assuming that the FreeType (and Xft2) specified APIs do not
lock out any of these advanced typographical features. If this work was carried out, STSF
and Xft2 could utilize this abstraction to allow the same engines to be used unmodified
with both technologies.

Fontconfig was designed to be entirely independent of X. As such, any application may
use Fontconfig and benefit from a shared font configuration as well as Fontconfig's font
naming and selection interfaces.

Text Rendering

Both Xft2 and STSF offer similar text rendering features. Both support anti-aliased, alpha
blended text and sub-pixel glyph positioning. Both projects are also limited in the quality
of text output mainly by the abilities of the rasterization engine currently being used.

As Xft2 is only a simple interface by which glyphs rasterized with FreeType can be
rendered to X using the RENDER extension, Xft2 does not provide a text layout interface.
This task is left to higher level, and application specific modules. For example, the
GNOME desktop project uses Pango which performs the required text layout using Xft2
to render the text.

STSF incorporates rendering and layout engine interfaces in one API. It also declares a
lower level Glyph Vector API – a set of functions for manipulating and rendering arrays
of positioned glyphs. The Glyph Vector API allows external layout engines to position
glyphs and use STSF to render them in a single atomic operation.

It is easy to port all GNOME desktop applications to use the Glyph Vector API since it fits
well within the GNOME/Pango model of laying out text that is nothing else but the
process of turning lines of text into arrays of positioned glyphs.

Portability and Interoperability

As with any X technology that depends on a new server extension, how that technology
operates when the X server doesn't actually have the extension is a very important
consideration for any application developer considering using that new technology.

Xft2 depends on the X RENDER extension to render glyphs. However, if the extension is
not available, Xft2 falls back to core X rendering routines at the expense of performance,
but still allowing alpha blended and anti-aliased text.

In the absence of an XST-enabled X server, XST client fallback is accomplished by the
Xclient directly communicating with an STSF font server and uploading scaled glyph
bitmaps to the X server via the core X protocol.

Thus, both Xft2 and STSF have very similar characteristics when operating on X servers
where the required X Server extension is not available.

Current Product Readiness/Deployment

Xft2 and Fontconfig are very close to being feature complete. The first stable release of
fcpackage5 was released in September 2002. Xft2 has been fully integrated into Pango and
gtk+ and will be a high profile part of GNOME 2.2. Xft2 has also been integrated into KDE
and Qt and work is almost complete on its integration into Mozilla. The Mozilla port, in
particular, provided valuable insight into the requirements for Xft2 and Fontconfig and
the availability of Unicode coverage and Language group information was added during
the port. However, Xft2 depends on the RENDER extension that requires X11 Server DDX
modules to provide support for 32-bit pixmaps. Many XFree86 and Sun DDX modules do
not yet support this 32-bit pixmaps, meaning that RENDER and therefore Xft2 still have
many obstacles to overcome.

STSF is near to being feature complete as well. The XST client library with fallbacks, XST
protocol and STSF client library APIs have been fully designed. Only a couple minor
functions remain. The STSF server has been completed and will be shipped in an
upcoming release. STSF has been linked into Pango and is fully compatible with the
requirements of the GNOME desktop. Work is underway to integrate STSF support into
Mozilla and StarOffice.

Performance Evaluation

In order to properly conduct a comparison of the performance of these two technologies,
accurate benchmarks are needed. Full benchmarks of STSF have not yet been created.
Nevertheless, some conjectural discussion is possible.

A key feature of the STSF architecture is that its glyph cache is stored in shared memory
between the STSF font server and all STSF client applications, including any X11 servers.
Xft2 stores each glyph cache within the memory space of its host X11 server. Running
Xft2 in multiple display environments makes each X11 server keep the entire copy of the
glyph cache resulting in significant unshared memory usage, but since RENDER's glyph
cache size is tunable, the amount of unshared memory used on multi-display servers can
be limited. This makes it possible to tune Xft2 to use the same amount of space as STSF's
larger single cache. The disadvantage of this approach is that Xft2 will have a smaller
cache to store glyphs, and as many applications share the same fonts, there will be much
duplication within those caches, and much less space for other glyphs. Therefore, Xft2
caching benefits applications on a single user's desktop, but does not benefit multiple
users, even when they are running identical applications. RENDER's glyph cache can be
tuned down to prevent a small number of users from overrunning a multiuser system,
but this may cause performance degradation.

On the other hand, STSF shares its glyph cache across all clients thus benefiting both
single user desktops and multiuser environments.

An Xft2 client sends every rasterized glyph data down to the X11 server. This bandwidth
demand has been shown to be less than the demand previously required by X11
applications when enumerating fonts and querying font metrics. However, a direct
comparison of Xft2 vs STSF bandwidth utilization has not yet been made.

When an X11 client is using a high latency connection to the X server, the number of
roundtrips required for an operation is very important for application's performance.
With RENDER adding glyph images to the server-side glyph cache does not require a
roundtrip and, as such, is completely asynchronous.

5 Fcpackage is the name given to a tarball of Fontconfig, Xft2, Xft1 and XRender. The first stable release
was version 2.0.

Given that XST extension is effectively only an X11 abstraction of the STSF Client library
API, many operations require a roundtrip both from the client to the X server and from
the X server to the font server. Furthermore, some simple operations require a number of
roundtrips e.g. to display all the font "names" associated with a font you must first list
each of the font tags available for the font and then, for each tag, individually request
the string associated with the tag - each of these operations require a "double roundtrip".

Nevertheless, for rendering purposes, STSF has been streamlined to reduce the number of
round trips to a minimum, and initial testing has shown that x11perf STSF benchmark
is more than 30% faster than x11perf Xft2 benchmark on all tested hardware.

GNOME Integration

GNOME has its own text layout implementation, Pango, which is designed to meet
GNOME's specific needs and, thus, Xft2 and STSF must provide certain capabilities
through their API in order to allow Pango integration. The API must allow the rendering
of individual glyphs at specific positions, and access to individual glyph extents.

Xft2 has already been proven to meet those needs and Pango integration is complete and
well tested, at least on Linux. Fontconfig provides Pango with an effective mechanism to
solve internationalization problem related to font coverage for complex languages.

The prototype of the STSF-GNOME/Pango integration has been implemented by utilizing
STSF Glyph Vector APIs. This exercise allows close comparison between Xft2 and STSF in a
Sun GNOME environment. Additionally, intense developer knowledge gained could be
applied to a critical evaluation of the Pango internals and possibly a more efficient and
elegant layout engine architecture

STSF/Xft Bridge

No matter how advantageous is it for application developers to switch to a newer and
better API is, porting all existing code to a different API is a difficult and a time-
consuming task. STSF developers implemented an Xft compatibility layer, “STSF/Xft
Bridge” that provides a binary-compatible replacement for libXft.so.

All existing open-source and commercial applications that use Xft can switch to STSF by
simply replacing a single shared library.

With STSF/Xft bridge applications use STSF only for rendering glyphs. All other services
that applications might use, including font configuration by fontconfig and text layout
by Pango, remain unchanged.

The STSF/Xft bridge is implemented on top of a light-weight glyph vector object of STSF
that does not perform text layout.

Summary
At first glance, STSF and Xft2 look to be similar technologies with similar goals. Both aim
to bring typographically high quality text to X11 users, leveraging relatively new font
technologies and formats. However, upon examining each project's sub-goals, the
differences become clearer.

Xft2/Fontconfig aims to provide sane font configuration, naming and matching, as well
as a relatively low-level text rendering API. This API leaves the high level implementation
details in the hands of outside developers, in particular the way it relies on the text

rendering and pluggable architecture of the FreeType renderer, and leaves text layout to
the layout engine in Pango, The downside is that these decisions are locked in place. Xft2
lacks mechanism and structure for adopting other renderers or layout engines. Xft2
moves away from the traditional X-server side font management in favor of a client side
scheme for reasons of expected wire protocol performance and more rapid developer
acceptance.

The design goals for STSF include a consistent cross-platform framework, scalability, and
potential for hardware-tuned performance. The framework approach directly supports
the wide variety of text renderers and layout engines from both open source and
commercial vendors. STSF declares a rich, high level API, designed to encapsulate all
known text rendering and layout attributes and capabilities as exercised in the leading
products from Microsoft, Adobe, Bitstream, Apple, and others. STSF includes a Glyph
Vector API that allows for the use of external layout engines. The scalability decisions
make STSF economical across multi-display systems, especially SunRay configurations.
The server-side font management permits STSF to use high speed, low overhead and low
cost capabilities of graphics hardware to assist anti-aliasing and text rendering. The
client-side fallback mechanism allows STSF clients to run on any X display.

Some portions of STSF's implementation are still being implemented and more thorough
performance testing is needed. Preliminary testing with x11perf utility demonstrates
STSF performance to be up to 200% faster than Xft2 running on the same hardware.

STSF has a much smaller memory footprint on multi-display systems. The API has been
tested using the GNOME desktop which resulted in GNOME looking the same as with
Xft2.

The design approach inherent in Xft2 is that of a modest proposal to improve text
rendering in X, which will then grow organically to address more point problems in this
area. The design approach in STSF more ambitiously specifies a complete text rendering
and layout framework that harnesses value-added rendering engines both commercial
and free, with function and performance gains that work well in the various worlds of
GNOME, Linux, and Solaris, from PCs on up to E15K class Sparc servers.

References
Gelfenbain, Alexander. “Standard Type Services Framework – Unicode-based Framework
for Rendering Typographically Sophisticated Text.”
Proceedings of the 22nd International Unicode Conference

Packard, Keith. “The Xft Font Library : Architecture and User Guide.”
http://keithp.com/~keithp/talks/xtc2001

Turner, David. “The Design of FreeType 2.”
http://www.freetype.org/freetype2/docs/design/index.html

Hersch, Roger D. “Font Rasterization: The State of the Art.”
http://diwww.epfl.ch/w3lsp/publications/typography/frsa.html

Taylor, Owen. “The Pango Documentation.”
http://www.pango.org

The STSF Team. “Standard Type Services Framework.”
http://stsf.sourceforge.net

Packard, Keith. “Fontconfig.Org”
http://www.fontconfig.org

Packard, Keith. “A New Rendering System For X.”
http://keithp.com/~keithp/talks/usenix2000/render.html

Packard, Keith. “Challenges of the X Rendering Extension”
http://keithp.com/~keithp/talks/renderproblems/

